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the probabilities a posteriori of the possible '' causes " of a given event." Since then 
i t  has been discussed by many writers of whom we shall here mention two only, 
BERT RAND^ and BOREL,~  whose differing views serve well to illustrate the point from 
which we shall approach the subject. 

BERTRANDput into statistical form a variety of hypotheses, as for example the 
hypothesis that a given group of stars with relatively small angular distances between 
them as seen from the earth, form a " system" or group in space. His method of 
attack, which is that in comlnon use, consisted essentially in calculating the probability, 
P, that a certain character, x, of the observed facts would arise if the hypothesis tested 
were true. If P were very small, this would generally be considered as an indication 
that the hypothesis, H, was probably false, and vice verscc. BERTRANDexpressed the 
pessimistic view that no test of this kind could give reliable results. 

BOREL, however, in a later discussion, considered that the method described could be 
applied with success provided that the character, x, of the observed facts were properly 
chosen-were, in fact, a character which he terms " en quelque sorte rernarquable." 

We appear to find disagreement here, but are inclined to think that, as is so 
often the case, the difference arises because the two writers are not really considering 
precisely the same problem. In  general terms the problem is this : Is i t  possible that 
there are any efficient tests of hypotheses based upon the theory of probability, and if 
so, what is their nature ? Before trying to answer this question, we must attempt to 
get closer to its exact meaning. In  the first place, i t  is evident that the hypotheses 
to be tested by means of the theory of probability must concern in some way the 
probabilities of the different kinds of results of certain trials. That is to say, they must 
be of a statistical nature, or as we shall say later on, they must be statistical hypotheses. 

Now what is the precise meaning of the words " an efficient test of a, hypothesis ? " 
There may be several meanings. For example, we may consider some specified 
hypothesis, as that concerning the group of stars, and look for a method which we 
should hope to tell us, with regard to a particular group of stars, whether they forin a 
system, or are grouped " by chance," their mutual distances apart being enormous 
and their relative movements unrelaked. 

If this were what is required of " an efficient test," we should agree with BERTRAND 
in his pessimistic view. For however small be the probability that a particular grouping 
of a number of stars is due to " chance," does this in itself provide any evidence of 
another " cause " for this grouping but " chance ? " " Comment dbfinir, d'ailleurs, 
la singularit6 dont on juge le hasard incapable ? "§ Indeed, if x is a continuous 
variable-as for example is the angular distance between two stars-then any value of 
x is a singularity of relative probability equal to zero. We are inclined to think that 

* ' Phil. Trans.,' vol. 53, p. 370 (1763). 
-f " Calcul des Probabilitks," Paris (1907). 
$ 'Le Hasard,' Paris (1920). 
$ BEBTRAND,loc. cit., p. 165. 
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as far as a particular hypothesis is concerned, no test based upon the theory of 
probability* can by itself provide any valuable evidence of the truth or falsehood of 
that hypothesis. 

But we may look at the purpose of tests from another view-point. Without hoping 
to know whether each separate hypothesis is true or false, we may search for rules to 
govern our behaviour with regard to them, in following which we insure that, in the 
long run of experience, we shall not be too often wrong. Here, for example, would be 
such a " rule of behaviour " : to decide whether a hypothesis, H, of a given type be 
rejected or not, calculate a specified character, x, of the observed facts ; if x > x, reject 
H, if x :x,, accept H. Such a rule tells us nothing as to whether in a particular case 
H is true when x 5 x, or false when x > x,. But it may often be proved that if we 
behave according to such a rule, then in the long run me shall reject H when it is true 
not more, say, than once in a hundred times, and in addition we may have evidence 
that we shall reject H sufficiently often when it is false. 

If we accept the words " an efficient test of the hypothesis H " to mean simply such 
a rule of behaviour as just described, then we agree with BOREL that efficient tests 
are possible. We agree also that not any character, x, whatever is equally suitable to 
be a basis for an efficient test,? and the main purpose of the present paper is to find 
a general method of determining tests, which, from the above point of view would 
be the most efficient. 

In common statistical practice, when the observed facts are described as " samples," 
and the hypotheses concern the "populations " from which the samples have been 
drawn, the characters of the samples, or as we shall term then1 criteria, which have 
been used for testing hypotheses, appear often to have been fixed by a happy intuition. 
They are generally functions of the moment coefficients of the sample, and as long as 
the variation among the observations is approximately represented by the normal 
frequency law, moments appear to be the most appropriate sample measures that we 
can use. But as FISHER^ has pointed out in the closely allied problem of 
Estimation, the moments cease to be efficient measures when the variation departs 
widely from normality. Further, even though the moments are efficient, there is 
considerable choice in the particular function of these moments that is most appropriate 
to test a given hypothesis, and statistical literature is full of exaniples of conf~ision of 
thought on this choice. 

A blind adoption of the rule, 

'Wases will, of course, arise where the verdict of a test is based on certainty. The question " ISthere 
a black ball in this bag ? " may be answered with certainty if we find one in a sample from the bag. 

This point has been discussed in earlier papers. See (a) NEYMANand PEARSON. ' Biometrika,' 
vol. 208, pp. 175 and 263 (1928); (6) NEYMAN. 'C. R. Premier Congrhs Math., Pays Slaves,' 
Warsaw, p. 355 (1929) ; (c) PEARSONand NEYMAN. ' Bull. Acad. Polonaise Sci. Lettres,' SQrie 8,p. 73 
(1930). 

f 'Phil. Trans.,' vol. 222, A, p. 326 (1921). 
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In  earlier papers we have suggested that the criterion appropriate for testing a given 
hypothesis could be obtained by applying the principle of likelihood.* This principle 
was put forward on intuitive grounds after the consideration of a variety of simple 
cases. It was subsequently found to link together a great number of statistical tests 
already in use, besides suggesting certain new methods of attack. It was clear, 
however, in using i t  that we were still handling a tool not fully understood, and i t  is 
the purpose of the present investigation to widen, and we believe simplify, certain of 
the conceptions previously introduced. 

We shall proceed to give a review of some of the more important aspects of the 
subject as a preliminary to a more formal treatment. 

Suppose that the nature of an event, E,  is exactly described by the values of n variates, 

For example, the series (6) may represent the value of a certain character observed 
in a sample of rz individuals drawn a t  random from a given population. Or again, 
the x's may be the proportions or frequencies of individuals in a random sample falling 
into Y A  out of the n -t1 categories into which the sampled population is divided. In any 
case, the event, E, may be represented by a point in a space of n, dimensions having (6) 
as its co-ordinates ; such a point might be termed an Event Point, but we shall here 
speak of it in statistical terms as a Sample Point, and the space in which it lies as the 
Sample Space. Suppose now that there exists a certain hypothesis, H,, concerning the 
origin of the event which is such as to determine the probability of occurrence of every 
possible event E. Let 

po=po (xl,xz, ... . . . . . . . . . . . .  (7) 

be this probability-or if the sample point can vary continuously, the elementary 
probability of such a point. To obtain the probability that the event will give a sample 
point falling into a particular region, say w, we shall have either to take the sum of 
(7) over all sample points included in w, or to calculate the integral 

P, (w) =j...1 p, (xl, x,, ...4)dzl dx, ... clx*. . . . . . .  (8) 
u 20 

The two cases are quite analogous as far as the general argument is concerned, and we 
shall consider oilly the latter. That is to say, we shall assume that the sample points 
may fall anywhere within a continuous sample space (which may be limited or not), 
which we shall denote by W. It will follow that 

* ' Biometrika,' vol. 2 0 ~ .  
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We shall be concerned with two types of hypotheses, (a) simple and (b) composite. 
The hypothesis that an event E has occurred subject to a completely specified probability 
law po(xl,x2,...x,) is a simple one ; while if the functional form of p, is given, 
though i t  depends upon the value of c unspecified parameters, H, will be called a com- 
posite hypothesis with c degrees of freedom." The distinction may be illustrated in 
the case where H, concerns the population l'I from which a sample, X,has been drawn a t  
random. For example, the normal frequency law, 

represents an infinite set of population distributions. A simple hypothesis is that E 
has been sampled from a definite member of this set for which a = a,, a = o,. 

A composite hypothesis with one degree of freedom is that the sampled population, IT, 
is one of the sub-set for which a = a, but for which a may have any value whatever. 
" STUDENT'S" original problem consisted in testing this composite hypothesis.Jy 

The practice of using observational data to test a composite hypothesis is a familiar 
one. We ask whether the variation in a certain character may be considered as 
following the normal law; whether two samples are likely to have come from a 
common population ; whether regression is linear ; whether the variance in a number 
of samples differs significantly. In  these cases we are not concerned with the exact 
value of particular parameters, but seek for information regarding the conditions and 
factors controlling the events. 

It is clear that besides H, in which we are particularly interested, there will exist 
certain admissible alternative hypotheses. Denote by a the set of all simple hypotheses, 
which in a particular problem we consider as admissible. If H, is a simple hypothesis, 
i t  will clearly belong to Q. If H, is a composite hypothesis, then i t  will be possible to 
specify a part of the set Q, say a ,  such that every simple hypothesis belonging to the 
sub-set o will be a particular case of the composite hypothesis H,. We could say also 
that the simple hypotheses belonging to the sub-set a ,  may bc obtained from H, by 
means of some additional conditions specifying the parameters of the function (7) 
which are not specified by the hypothesis H,. 

In  many statistical problems the hypotheses concern different populations from 
which the sample, 2 ,may have been drawn. Therefore, instead of speaking of the sets 
a or w of simple hypotheses, it will be sometimes convenient to speak of the sets 
or w of populations. A composite hypothesis, H,, will then refer to populations 
belonging to the sub-set w, of the set Q. Every test of a statistical hypothesis in the 
sense described above, consists in a rule of rejecting the hypothesis when a specified 

* The idea of degrees of freedom as defined above, though clearly analogoue, is not to be confused with 
that introduced by FISHER. 

-t ' Biometrika,' vol. 6, p. 1(1908). 
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character, 2, of the sample lies within certain critical limits, and accepting it or 
remaining in doubt in all other cases. In the n-dimensional sample space, W, the 
critical limits for x will correspond to a certain critical region w, and when the sample 
point falls within this region we reject the hypothesis. If there are two alternative 
tests for the same hypothesis, the difference between thein consists in the difference 
in critical regions. 

We can now state briefly how the criterion of likelihood is obtained. Take any 
sample point, C, with co-ordinates (x,, x,, ...x,) and consider the set A, of 
probabilities pH(x,, x,, ...x,) corresponding to this sample point and determined by 
different simple hypotheses belonging to a. We shall suppose that whatever be the 
sample point the set A, is bounded. Denote by po (x,, x,, ...xn) the upper bound 
of the set A,, then if H, is a simple hypothesis, determining the elementary 
probability p, (x,, x,, ...x,), we have defined its likelihood to be 

If H, is a composite hypothesis, denote by A, (a) the sub-set of A, corresponding 
to the set w of simple hypotheses belonging to H, and by p, (x,, x,, ... x,) the 
upper bound of A, (a).  The likelihood of the composite hypothesis is then 

In most cases met with in practice, the elementary probabilities, corresponding to 
different simple hypotheses of the set i2 are continuous and differentiable functions 

of the certain number, k ,  of parameters a,, a,, ... a,, a,,,, ... a, ; and each simple 
hypothesis specifies the values of these parameters. Under these conditions the 
upper bo;nd, pa (x,, x,, ...x ~ ) ,  is often a maximum of (13) (for fixed values of the 
x's), with regard to all possible systems of the a's. If H, is a composite hypothesis 
with c degrees of freedom, i t  specifies the values of L -c parameters, say a,,,, a,,,, ... a, 

and leaves the others unspecified. Then p, (x,, x,, ...x,) is often a maximum of (13) 
(for fixed values of the x's and of a,,,, a,,,, ... a,) with regard to all possible values 
of a,, a,, ... u,. 

The use of the principle of likelihood in testing hypotheses, consists in accepting 
for critical regions those determined by the inequality 

I. 5 C = const. . . . . . . . . . . . .  (14) 


Let us now for a moment consider the form in which judgments are made in practical 
experience. We may accept or we may reject a hypothesis with varying degrees of 
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confidence ; or we may decide to remain in doubt. But whatever conclusion is reached 
the following position must be recognised. If we reject H,, we may reject it when it 
is true ; if we accept H,, we may be accepting it when i t  is false, that is to say, when 
really some alternative H, is true. These two sources of error can rarely be eliminated 
completely ; in some cases it will be more important to avoid the first, in others the 
second. mTe are reminded of the old problem considered by LAPLACEof the number of 
votes in a court of judges that should be needed to convict a prisoner. Is  it more serious 
to convict an innocent man or to acquit a guilty ? That will depend upon the con- 
sequences of the error ; is the punishinent death or fine ; what is the danger to the 
community of released criminals ; what are the current ethical views on punishment ? 
From the point of view of mathematical theory all that we can do is to show how the 
risk of the errors may be controlled and minimised. The use of these statistical tools 
in any given case, in deterniining just how the balance should be struck, must be left 
to the investigator. 

The principle upon which the choice of the critical region is determined so that the 
two sources of errors may be controlled is of first importance. Suppose for simplicity 
that the sample space is of two dimensions, so that the sainple points lie on a plane. 
Suppose further that besides the hypothesis H, to be tested, there are only two 
alternatIives H1 and H,. The situation is illustrated in fig. 1, where the cluster of spots 
round the point 0 ,  of circles round A,, and of crosses round A, may be taken to 

represent the probability or density field appropriate to the three hypotheses. The 
spots, circles and crosses in the figure suggest diagrammatically the behaviour of the 
functions pi (xl, 24,  i = 0, 1,  2, in the sense that the number of spots included in any 
region to  is proportional to the integral of p, (x,, x,) taken over this region, etc. 
Looking a t  the diagram we see that, if the process of sampling was repeated many 
times, then, were the hypothesis KOtrue, most sample points would lie somewhere 
near the point 0. On the contrary, if H, or H, were true, the sample points would 
be close to 0 in comparatively rare cases only. 
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In trying to choose a proper critical region, we notice a t  once that it is very easy to 
control errors of the first kind referred to above. In fact, the chance of rejecting the 
hypothesis H, when it is true may be reduced to as low a level as we please. For if zc 
is any region in the sample space, which we intend to use as a critical region, the 
chance, Po (w), of rejecting the hypothesis H, when i t  is true, is merely the chance 
determined by H, of having a sample point inside of w, and is equal either to the 
sum (when the sample points do not form a continuous region) or to the integral 
(when they do) of p, (x,, x,) taken over the reg io~~  zu. It may be easily made s E, 

by chosing w sufficiently small. 
Pour possible regions are suggested on the figure ; (1)w, ; (2) w,,i.e., the region to 

the right of the line BC ; (3) w,, the region within the circle centred a t  A, ; (4) w4, 
the region between the straight lines OD, OE. 

If the integrals of po(x,, x,) over these regions, or the numbers of spots included in 
them, are equal, we know that they are all of equal value in regard to  the first source 
of error ; for as far as our judgment on the truth or falsehood of H, is concerned, if 
an error cannot be avoided i t  does not matter on which sample we make it.* It is the 
frequency of these errors that matters, and this-for errors of the first kind-is equal 
in all four cases. 

It is when we turn to consider the second source of error--that of accepting KOwhen 
i t  is false-that we see the importance of distinguishing between different critical regions. 
If H, were the only admissible alternative to H,, i t  is evident that we should choose 
from w,,w,, w, and zu, that region in which the chance of a sanlple point falling, if HI 
were true, is greatest ; that is to say the region in the diagram containing the greatest 
number of the small circles forming the cluster round A,. This would be the region 
zu,, because for example, 

Pl (20,) > P, (w,) or PI (W - to2) <PI (TV -w,). 

This we do since in accepting H, when the sample point lies in (1,B -ul,),me shall be 
aecepting it when H, is, in fact, true, less often than if we used ,uh. We need indeed to 
pick out from all possible regions for which Po (zo) =E, that ~egion, to,,for uihiclz P, (to,) 
is a rnaximum and PI (W -w,)conseqwently a minimum ; this region (or regions if 
niore than one satisfy the condition) we shall term the Best Critical Region for H, 
witli regard to HI. There will be a family of such regions, each member corresponding 
to a different value of E. The conception is simple but fundamental. 

It is clear that in the situation presented in the diagram the best critical region with 
regard to H, will not be the best critical region with regard to TI,. While the first may 
be w,, the second may be 20,. But it will be shown below that in certain problems 
there is a common family of best critical regions for H, with regard to the whole class 

* If the samples for which H, is accepted are to be used for some purpose and those for which it is rejected 
to be discarded, i t  is possible that other conceptions of relative value may be introduced. But the problem 
is then no longer the simple one of discriminating between hypotheses, 

VQL. CCXXX1.-A. 2 S 
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of admissible alternative hypotheses fi.* In  these problems we have found that the 
regions are also those given by using the principle of likelihood, although a general 
proof of this result has not so far been obtained, when H, is composite. 

In  the problems where there is a diferent best critical region for Nowith regard to 
each of the alternatives constituting S z ,  some further principle must be introd~tced in 
fixing what may be termed a Good Critical Region with regard to the set 0.  MTe 
have found here that the region picked out by the likelihood method is the envelope of 
the best critical regions with regard to tlle indi~~idual Thishypotheses of the set. 
region appears to satisfy our intuitive requirements for a good critical region, but we 
are not clear that i t  has the unique status of the comnlon best critical region of the 
former case. 

We have referred in an earlier section to the distinction between simple and coinposite 
hypotheses, and it will be shown that the best critical regions may be found in both 
cases, although in the latter case they must satisfy certain additional conditions. 
If, for example in fig. 1, H, were a composite hypothesis with one degree of freedom 
such that while the centre of the cluster of spots were fixed a t  0, the scale or measure 
of radial expansion were unspecified, it is clear that w,could be used as a critical region, 
since Po(w,)= E would remain constant for any radial expansion or contraction of the 
field. Neither to,, zo, nor w3satisfy this condition. "STUDENT'Stest is a case in which " 
a hyperconical region of this type is used. 

111.-SIMPLE HYPOTHESES. 

(a) General Tlzeory. 

We shall now consider how to find the best critical region for EI, with regard to a 
single alternative 8,; this will be the region wofor which P, (.zoo)is a maximum sltbject 
to the condition that, 

Po(w,)= E. . . . . . . . . . . . . .  (15) 

We shall suppose that the probability laws for H, arid H,, namely, p, (x,,x,, ...xn) 

and p, (x,, x,, ... x%),exist, are continuous and not negative throughout the whole 
sample space W ; further that 

Po(M7)=PI(W) = 1. . . . . . . . . . . .  (16) 

Pollowing the ordinary method of the Calculus of Variations, the problem will consist 

in finding an unconditioned minimum of the expression 

k being a constant afterwards to be determined by the condition (15). Suppose that' 
the region w,has been determined and that S is the hypersurface limiting it. Let s, 

* Again as above, eacll member of the family is determined by a different value ~f E. 



299 THE MOST EFFICIENT TESTS OF STATISTICAL HYPOTHESES. 

be any portion of S such that every straight line parallel to tlle axis Ox,, cuts s, not 
more than once ; denote by a, the orthogonal projection of s, on the prime or hyperplane 
xfi= 0. Clearly a, will be a region in the (n- 1)dimensioned space of 

for which there will exist a unifornl function 

whose value together with the corresponding values of (18) will determine the points 
on the hypersurface s,. 

Consider now a region w,(a) bounded by 
(1) The hypersurface s, with equation 

where a is a parameter independent of the x's, and 8 any unifornl and continuous 
function. 

(2) By the hypercylinder projecting s, on to a,. 
(3) By any hypersurface s, with equation, 

having the following properties :-
(a) It is not cut more than once by any straight line parallel to the axis Ozn. 
(b) It lies entirely inside the region w,. 
(c) Every point on a straight line parallel to Ox, lying between the points of its 

intersection with s, and s, belongs to w,. 
For the case of n - 2, the situation can be pictured in two dimensions as shown in 

fig. 2. Here w, (a) is the shaded region bounded by the curves s, and s,, and the two 
vertical lines through A and B, o, is the portion AB of the axis Ox,. In general 
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if the region w, is such as to give a minimum value to the expression (17), i t  follows that 

considered as a function of the varying parameter a must be a minimum for a = 0. 
Hence differentiating 

whatever be the form of the f~unction8. This is known to be possible only if the 
expression within curled brackets on the right hand side of (23) is identically zero. 
I t  follows that if w, is the best critical region for H, with regard to H,, then at  every 
point on the hypersurface s, and consequently a t  every point on the complete boundary 
S, we must have 

k being a constant. This result gives the necessary boundary condition. 'lFTe shall 
now show that the necessary and sufficient condition for a region w,, being the best 
critical region for H, with regard to the alternative hypothesis, H,, consistsdin the 
fulfilnlel~tof the inequality p, (x,, x,, ... x,) > kp, (x,, x,, ... x,), k being a constant, 
at  any point outside w, ; that is to say that w, is defined by the inequality 

Denote by w,the region defined by (25 )  and let w, be any other region satisfying 
the condition Po(w,) =Po(w,) = E (say). These regions may have a common part, 
to,,. The situation is represented diagrammatically in fig. 3. 

It will follow that,, 

Po(w, - 2u01) = E - PO ( ~ 0 1 )=Po ( ~ 1-w01L ' ' . . . (26) 

and consequently 
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If we add kP, (w,,) to both sides of the inequality, we obtain 

hP1 (wo) = kP1 (w,) 

P ( w )  P (w) .  . . . . . . . 
From the considerations advanced above it follows that w,is less satisfactory as a 

critical region than 20,. That is to say, of the regions w, for which Po(w) = E, satisfying 
the boundary condition (24), the region to, defined by the inequality (25) is the best 
critical region with regard to the alternative HI. There will be a family of such best 
critical regions, each member of which corresponds to a different value of E. 

As will appear below when discussing illustrative examples, in certain ca,ses the family 
of best critical regions is not the same for each of the admissible alternatives HI,H,, . . . ; 
while in other cases a single common family exists for the whole set of alternatives. 
In the latter event the basis of the test is remarkably simple. If we reject H, when 
the sample point, 2 ,  falls into w,, the chance of rejecting it when it is true is c, and the 
risk involved can be controlled by choosing from the family of best critical regions to 
which w, belongs, a region for which c is as small as we please. On the other hand, if 
we accept H, when E falls outside w,,we shall sometimes be doing this when some H, 
of the set of alternatives is really true. But we know that whatever be H,, the region 
w, has been so chosen as to reduce this risk to a minimum. In this case even if we had 
precise information as to the a priori probabilities of the alternatives H,, H,, . . .we could 
not obtain any improved test.* 

It is now possible to see the relation between best critical regions and the region 
defined by the principle of likelihood described above. Suppose that for a hypothesis 
H, belonging to the set of alternatives R, the probability law for a given sample is 
defined by 

(1) an expression of given functional type p (x,, x,, ... xn) 
(2) the values of c parameters contained in this expression, say 

This law for H, may be written as p, =% (x,,x,, ... xn). The hypothesis of 
maximum likelihood, H ( R max.), is obtained by maximising p, with regard to these 
c parameters, or in fact from a solution of the equations, 

The values of the a's so obtained are then substituted into p to give p ( R max.). Then 

* Bor properties of critical regions given by the principle of likelihood from the point of view of 
probabilitiesa posteriori, see N E Y ~ N ,Contribution to the Theory of Certain Test Criteria," Bull. Inst. " ' 
int. Statist.,' vol. 24, pp. 44 (1928). 
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the family of surfaces of constant likelihood, h ,  appropriate for testing a simple hypothesis 
H, is defined by 

po = hp ( il max.). . . . . . . . . . . . .  (31) 

It will be seen that the members of this family are identical with the envelopes of the 
family 

po = kpt, . . . . . . . . . . ‘ . . .  (32) 


which bound the best critical regions. From this it follows that, 
( a )  If for a given E a common best critical region exists with regard to the whole set 

of alternatives, i t  will correspond to its envelope with regard to these alternatives, 
and i t  will therefore be identical with a region bounded by a surface (31). 
Further, in this case, the region in which h :h,  = const. will correspond to 
the region in which p, Ihop,. The test based upon the principle of likelihood 
leads, in fact, to the use of best critical regions. 

( h )  If there is not a common best critical region, the likelihood of H ,  with regard 
to a particular alternative H ,  will equal the constant, k ,  of equation (32). It 
follows that the surface (31) upoil which the lilielihood of H ,  with regard to the 
whole set of alternatives is constant, will be the envelope of (32) for which -- A. 
The interpretation of this result will be seen more clearly in some of the examples 
which follow. 

(b )  Illustrative ExchfnpZes. 

(1) Sample Space Ufllilnited ;Case of t?ae Norn~aZ I'opulatiojt.--Exa?nple (I). Suppose 
that i t  is known that a sample of n individuals, x,, x,, ... xfl has been drawn 
randomly froni some aiormally distributed population witb standard deviation o = a,, 

but i t  is desired to test the hypothesis H ,  that the mean in the sampled population is 
a = a,. Then the adniissible hypotheses concern the set of populations for which 

the mean, a, being unspecified, but a always equal to o,. Let HI relate to the member 
of this set for which a =a,. Let 2 and s be the mean and standard deviation of the 
sample. The probabilities of its occurrence determined by H, and by HI will then be 

fand the equation (24) beco~nes 
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From this it follo.vvs that the best critical region for H, with regard to HI, defined 
by the inequality (25 ) )becomes 

a . .(a,-al)1X: 5 4(a;- al2)+ A log 7c = (a,- a,)Z, (say). (37)n 

Two cases will now arise, 
(a)a,< a,,then tlie region is defined by 

( h )  a, > a,, then the region is defined by 
-

We see that whatever be H, and al,the fanlily of hypersurfaces corresponding to 
differentvalues of k ,  bounding the best critical region, will be the same, namely, 

These are primes in the a-dimensioned space lying a t  right angles to the line, 

If, however, the class of admissible alternatives includes both those for which 
a <a, and a> a,,there will not be a single best critical region ; for the first it will 
be defined by Z z 2, and for the second by Z 2 Z,,where 5& is to be chosen so that 
po (Z55,)= E.* This situation will not present any difficulty in practice. Suppose
-
x > a, as in fig. 4. We deal first with the class of alternatives for which a > a,. 

-
If E =0 05 ; x0 ;=a,+ 1 -6449a,/Jk, and if Z < Z,, we shall probably decide to 
accept the hypothesis H,as far as this class of alternatives is concerned. That being 
so, we shall certainly not reject H, in favour of the class for which a < a,,for the risk 
of rejection when H,were true would be too great. 

n (F-cr, , )a - +a - n ( ? - ~ , , ~-,= Jz jrO P -- 2.0' 6, Po(T E 5.1 =I-d2&jro e :w2 'd ~ .* In this example Po(z2 
Do 2x -, =o 
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The test obtained by finding the best critical region is in fact the ordinary test for 
the significance of a variation in the mean of a sample ; but the method of approach 
helps to bring out clearly the relation of the two critical regions it ..= Z, and Z 2 2,. 
Further, i t  has been established that starting from the same information, the test of 
this hypothesis could not be improved by using any other form of criterion or critical 
region. 

Example (2).-The admissible hypotheses are as before given by (33), but in this 
case the means are known to have a given common value a,, while o is unspecified. 
We may suppose the origin to be taken at  the common mean, so that a = a, =0. 

H, is the hypothesis that o = o,, and an alternative H, is that o = o,. I11 this case 
i t  is easy to show that the best critical region with regard to H1 is defined by the 
inequality, 

where v is a constant depending only on E ,  o,, o,. Again two cases will arise, 
(a) o, < o, ; then the region is defined by 

(b) o, > a, when i t  is defined by 

The best critical regions in the ?I-dimensioned space are therefore the regions (a) 
inside and (b) outside hyperspheres of radius v ,/n whose centres are at  the origin of 
co-ordinates. This family of hyperspheres will be the same whatever be the alternative 
value ol ; there will be a common family of best critical regions for the class of 
alternatives o, < o,, and another common family for the class o1 > o,. 

It will be seen that the criterion is the second moment coefficient of the san~ple about 
the known population mean, 

m', = 
-
x2 + s2,  . . . . . . . . . . . . .  (45) 


and not the sample variance s2 .  Although a little reflection might have suggested this 
result as intuitively sound, i t  is probable that s2 has often been used as the criterion in 
cases where the mean is known. The probability integral of the sampling distributions 
of ntf2and s2 may be obtained from the distribution of + = x2 ,  namely, 

by writing 

and 
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It is of interest to compare the relative efficiency of the criteria m', and s2 in avoiding 
errors of the second type, that is of accepting H, when it is false. If it is false, suppose 
the true hypothesis to be H, relating to a population in which 

In testing H, with regard to the class of alternatives for which o > o,, we should 
determine the critical value of $, so that 

and would accept Ho if 9 < 3,. But if H, is true, the chance of finding 9 < +o,+ o  

being determined from (50), that is of accepting H, (though it is false), will' be 

The position is shown in fig. 5. Buppose that for the purpose of illustration we take 
E = 0.01 and n = 5. 

(a) Using mf2 and thus the best critical region, we shall put f = 5 in (46), and from 
(50) entering the tables of the x2 integral with 5 degrees of freedom, find that 9, = 

15.086. Hence from (51), 

(b) On the other hand, if the variance, s2, is used as criterion, we must put f= 4 
in (46) and find that $, = 13.277. Hence 

In fact for h = 2 ,  3 or any other value, it  is found that the second test has less power 
of discrimination between the false and the true than the test associated with the 
best critical region. 

VOL. CCXXX1.-A. 2 T 
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Example (3).-The admissible hypotheses are given by (33), both a and o being in this 
case unspecified. We have to test the simple hypothesis H,, that a = a,, o = 0,. 

The best critical region with regard to a single alternative H,, with a = a,, a =GI, 
will be defined by 

si-a, 2 

rlc. . . . . . . . .  (52)

PI 

This inequality may be shown to result in the following 
(a)  If 0, < GO 

where 

and v is a constant, whose value will depend upon a,, a,, Go, a, and E. It will be seen 
that a best critical region in the n-dimensioned space is bounded by a hypersphere of 
radius v Jn with centre a t  the point (x,= x2 = ... -- x ,  = a). The region will be the 
space inside or outside the hypersphere according as o, < o, or o, > o,. If a,=a, = 0 
the case becomes that of example (2). 

Unless the set of admissible hypotheses can be limited to those for which a = constant, 
there will not be a common family of best critical regions. The position can be seen 
most clearly by taking 33 and s as variables ; the best critical regions are then seen to 
be bounded by the circles 

(5- a)2+ s2= v2. . . . . . . . . . . .  (56) 


If p, (v) be the probability law for v, then the relation between E and v,, the radius 
of the limiting circles is given by 

and 

p, (v) dv = c if ol> o,. . . . . . . . . . .  (58) 

By applying the transformation 
-
x = a + v c o s $ ,  s = v s i n $ ,  . . . . . . . . . .  (59) 

t0 
(Z, S) = Sn-2 e-&n(zz+sz) . . . . . . . . . .  (60) 

i t  will be found that 
e-+na2 vn-l  e--fnv"-nav cos $PO(v) = S, c j  d $ .  . . . .  (61) 

This integral may be expressed as a series in ascending powers of ,I),* but no simple 
method of finding v, for a given value of E has been evolved. 

* It is a series containing a finite number of terms if n be odd, and an infinite series if a be even. 
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is now limited to ICTTo,. If, however, a class of alternatives exists for which the space 
W,, varies with t ,  there will probably be no common best critical region. The position 
may be illustrated in the case of the so-called rectangular distribution, for which the 
probability law can be written, 

p (x) = l/b for a - $b x 5 a + i b  

p ( x )  =0 for x < a - $band x > a + ib 
) . . . . .  (63) 

a will be termed the mid-point and b the range of the distribution. 
Example (4).--Suppose that a sample of .n individuals x,, x,, ...x, is known 

to have been drawn a t  random from some population with distribution following 
(63), in which b =b,, and i t  is wished to test the simple hypothesis M, that in the 
sampled population, a =a,. For the admissible set of alternatives, b =b,, but a is 
unspecified. For H, the sample space Wo is the region within the hypercube, defined by 

If H, be a member of the set of alternatives for which a = a,, then 

provided the sample point lies within W,,. It follows that a t  every point in TV,, 
po/p, = lc = 1, and that Po(w,) = E for any region whatsoever within W,,, the content 
of which equals E times the content, b,", of the hypercube W,. 

There is in fact no single best critical region with regard to H,. Fig. 7 illustrates the 

position for the case of samples of 2. The sample spaces W, and W, are the squares 
A, A, A, A, and B, B2 B, B, respectively. A critical region for H, with regard to H, 
will consist of- 

(1) The space W, -W,, =A,CB,B,B,D ; 
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( 2 )  Any region such as w',, lying wholly inside the common square W,, =B,CA,I), 
containing an area E bO2. 

The value of E is a t  our choice and may range from 0 to (a,- a, + bo)2,according 
to the balance it is wished to strike between the two kinds of error. We shall not 
allow any part of w, to lie outside BlCA3D in the space W ,  - W,,, for this would 
lead to the rejection of H ,  in cases where the alternative H, could not be true. 

For different alternatives, H,, of the set, the mid-point of the square BlB,B3B, will 
shift along the diagonal OAlA3. For a fixed E we cannot find a region that will be 
included in W,, for every H,, but we shall achieve this result as nearly as possible if 
we can divide the alternatives into two classes- 

(a )  a, > a,. Take woo as the square GEA3P with length of side = b o d ;  lying in 
the upper left hand corner of W,. 

(b)  a, < a,. Take a similar square with corner a t  A,. 

In  both cases the whole space outside W ,  must be added to make up the critical 
region w,. In  the general case of samples of n, the region woowill be a hypercube with 
length of side b,V;/; fitting into one or other of the two corners of the hypercube of 
W ,  which lie on the axis x, = x, = ... = x,,. The whole of the space outside W ,  
within which sample points can fall will also be added to wooto make up w,.* 

Example ( 5 ) .  Suppose that the set of alternatives consists of distributions of form 
(63))for all of which a == a,, but b may vary. H ,  is the hypothesis that b = b,. The 
sample spaces, Wt, are now hypercubes of varying size all centred a t  the point 
(x,= x,  = ... = x, = a,). A little consideration suggests that we should make the 
critical region w,consist of- 

( I )  The whole space outside the hypercube W , .  
(2 )  The region wooinside a hypercube with centre a t  (x ,  = x,  = ... = x, =a,), sides 

parallel to the co-ordinate axes and of volume cbon. This region woois chosen 
because i t  will lie completely within the sample space W,, common to H, and 
H, for a larger number of the set of alternatives than any other region of equal 
content. 

Example (6).-H, is the hypothesis that a = a,, b = b,, and the set of admissible 
alternatives is given by (63) in which both a and b are now unspecified. Both the 
mid-point ( x ,  =z, = ... = x ,  = a,) and the length of side, b,, of the alternative sample 
spaces W ,  can therefore vary. Clearly we shall again include in w, the whole space 
outside W,, but there can be no common region woowithin W,. 

Fig. 8s represents the position for n = 2. Four squares W,, W,, W,, and W ,  
correspond to the sample spaces of possible alternatives H,, EI,, H,, and H,, and the 
smaller shaded squares w,, w,, w,, and w, represent possible critical regions for H ,  with 
regard to these. What compromise shall we make in choosing a critical region with 

* If the set is limited to distributions for which b = b,, no sample point can lie outside the envelope of 
hypercubes whose centres lie on the axis a, =x,= ... =x,. 
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regard to the whole set i2 ? As we have shown elsewhere* the method of lilcelihood 
fixes for the critical region that part of the space that represents samples for which 
the range (the difference between extreme variates) is less than a given value, say 
1 s I,. For samples of 2, 1 = x, - x, if xl > x,, and x2- x1 if x, < x,, and the 
critical region woowill therefore lie between two straight lines parallel to and equidistant 
from the axis x1 =x,. A pair of such lines will be the envelope of the small squares zul, 
w,,etc., of fig. 8A. In fact, the complete critical region will be as show11 in fig. 8 ~ ,the 
belt woobeing chosen so that its area is sb2.  

For 112 = 3 the surface I = 1, is a prism of hexagonal cross-section, whose generating 
lines are parallel to the axis x1 =x2= x,. The space, woo,within this and the whole 
space outside the cube ?Vo will form the critical region wo. In general for samples 
of n the critical region of the likelihood method will consist of the space outside the 
hypercube W,, and the space of content cbOnwithin the envelope of hypercubes having 
centres on the axis ~c,=2, = . . . =x,, and edges parallel to the axes of co-ordinates. 

It will have been noted that a correspondence exists between the hypotheses tested 
in examples (1)  and (4)) (2) and ( 5 ) ,  (3) and (6)) and between the resulting critical 
regions. Consider for instance the position for n = 3 in example (3) ; the boundary 
of the critical region may be obtained by rotating fig. 6 in 3-dimensioned space about 
the axis of means. The region of acceptance of Ho is then bounded by a surface 
analogous to an anchor ring surrounding the axis x1 =x, = x,,traced out by the rotation 
of the dotted curve h = constant. Its counterpart in example (6) is the region inside 
a cube from which the hexagonal sectioned prism woo surrounding the diagonal 

* 'Riometrika,' vol. 2 0 ~ ,  p. 208 (1928). Section on Samples from a Rectangular Population. 
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x, =x, = x, has been renoved. A similar correspondence may be traced in the case 
of sampling from a distribution following the exponential law. It continues to hold 
in the higher dimensioned spaces with .n > 3. 

The difference between the normal, rectangular and exponential, laws is of course, 
very great, but the question of what may be termed the stability in forin of best critical 
regions for smaller changes in the frequency law, p (x1, x,, ... x,), is of considerable 
practical importance. 

IV.-COMPOSITE HYPOTHESES. 
(a) Introductory. 

In the present investigation we shall suppose that the set CJof admissible hypotheses 
defines the functional form of the probability law for a given sample, namely- 

p (XI, x2, ...x,), . . . . . . . . . . . . .  (66) 

but that this law is dependent upon the values of c + d parameters 

A composite hypothesis, H',, of c degrees of freedoin is one for which the values of 
d of these parameters are specified and c unspecified. We shall denote these parameters 

by 
I ,  2 . . .a (; a0

(~+1),... ao(c+d). . . . . . . . .  (68) 


This composite hypothesis consists of a sub-set w (of the set a)of simple hypotheses. 
We shall denote the probability law for H', by 

associating with (69) in any given case the series (68). An alternative simple hypothesis 
which is definitely specified will be written as H,, and with this will be associated 

(1) a probability law 
pt =pt (xl, X,, ...x,). . . . . . . . . . . . . (70) 

(2) a series of parameters 
at(1),a,(,),... c ( ~ ( ~ + ' ~ ) .. . . . . . . . . . . .  (71) 

We shall suppose that there is a common sample space W for any admissible hypothesis 
H,, although its probability law pt may be zero in some parts of W. 

As when dealing with simple hypotheses we must now determine a family of critical 
regions in the sample space, W, having regard to the two sources of error in judgment. 
In the first place it is evident that a necessary condition for a critical region, w, suitable 
for testing H', is that 

P, (w)=!J ...3 p0 (xl, a,, ...xR) dx, b, ... dx, = constant = E . . (72) 
W 
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for every simple hypothesis of the sub-set o. That is to say, it is necessary for Po(w) 
to be independent of the values of a''), a(", ... a(''. If this condition is satisfied 
we shall speak of w as a region of '' size " E, similar to  FV with regard to the c parameters 
d l ) ,  a(2), ...a(r). 

Our first problem is to express the condition for similarity in analytical form. After-
wards i t  will be necessary to pick out from the regions satisfying this condition that one 
which reduces to a minimum the chance of accepting Hrowhen a simple alternative 
hypothesis H, is true. If this region is the same for all the alternatives H, of the 
set i2 ,  then we shall have a common best critical region for Hrowith regard to the 
whole set of alternatives. The fundamental position from which we start should be 
noted a t  this point. It is assumed that the only possible critical regions that can be 
used are similar regions ; that is to say regions such that P (w) = c for every siniple 
hypothesis of the sub-set o. It is clear that were i t  possible to assign differing measures 
of a pviori probability to these simple hypotheses, a principle might be laid down for 
determining critical regions, w, for which P (w) would vary from one simple hypothesis 
to another. But i t  would seem hardly possible to put such a test into working form. 

We have, in fact, no hesitation in preferring to retain the simple conception of control 
of the first source of error (rejection of H', when it is true) by the choice of E, which 
follows from the use of similar regions. This course seems necessary as a matter of 
practical policy, apart froin any theoretical objections to the introduction of measures 
of a priori probability. 

( b )  Similar Regions for Case in which Hrohas One Deyree of Freedom,. 


?Ye shall commence with this simple case for which the series (68) becomes 


We have been able to solve the problem of similar regions only under very limiting 
conditions concerning p,. These are as follows :-

(a)p0 is indefinitely differentiable with regard to a'l) for all values of a") and in 
every point of FV, except perhaps in points forming a set of measure zero. That is to 

avo say, we suppose that ----exists for any k = 1, 2, ...and is integrable over the a ( a (~ ) )  

region W. 
Denote by 

(b) The function p, satisfies the equation 

1vher.e the coefficients A and I3 are functions of a'" hut are indepmdeni of d;,x,,, ...x9?. 
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(d) Illustrative Examples. 
(1) Example (8).-The Hypothesis cofxce~~ing 	 "the Population Meaft (" STUDENT'S 

Problem) .-A sample of n has been drawn a t  random from some normal population, and 
H', is the composite hypothesis that the mean in this population is a = a,, G being 
unspecified. We have already discussed the problem of determining similar regions 
for H', in example (7). H, is an alternative for which 

all)= - . . . . . . . . . . .  (106)
t ,  - a t . .  

The family of hypersurfaces, 4 = constant, in the n-dimensioned space are hyper- 
spheres (96) centred a t  ($, = x2 = ...=x,, = a,) ; we must determine the nature of 
the pieces defined by condition (105), to be taken from these to build up the best critical 
region for H', with regard to H,. 

Using (92), i t  is seen that the condition p, 2 kp, becomes 

As we are dealing with regions similar with regard to &(I), that; is, essentially 
independent of the value of the parameter a(,) = o, we may put G = ot and find that 
(107) reduces Do, 

- 1
x (a, - a,) 2 -at log k 4- (a," ao2)= ((a, - a,) k, (4)  (say). . .  (208)9% 

Two cases must be distinguished in determining w, (4)-

(a) at > 00, then Z r k, (4) . . . . . . . . .  (109) 

(b) 	a, <a , ,  then 2 k ( 4 )  . . . . . . . . .  (110) 


where Ic, (4) has to be chosen so that (91) is satisfied. Conditions (109) and (110) 
will determine the pieces of the hyperspheres to be used. In  the case rz = 3, 
x =4(x,+ x2 -t2,) is a plane perpendicular to the axis x, = x, = x,, and i t  
follows that w,(+)will be a " polar cap " on the surface of the sphere surrounding this 
axis. The pole is determined by the condition a, > a, or at < a,. The condition (91) 
implies that the area of this cap must be E times the surface area of the whole sphere. 
The position is indicated in fig. 10. For all values of 4,that is to say, for all the 
concentric spherical shells making up the complete space, these caps must subtend a 
constant angle a t  the centre. Hence the pieces, w, ($), will build up into a cone of 
circular cross-section, with vertex a t  (a,, a,, a,) and axis x, =x2=x,. For each 
value of E there will be a cone of different vertical angle. There will be two families of 
these cones containing the best critical regions- 

(a) For the class of hypotheses a, > a, ; the cones will be in the quadrant of positive 
X'S. 

(b) 	For the class of hypotheses at <-ao ; the cones will lie in the quadrant of 
negative x's. 
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It is of interest to compare the general type of similar region suggested in fig. 9 with 
t11e special best critical region of fig. 10. 

For the cases .n > 3 we may either appeal to the geometry of multiple space, or proceed 
analytically as follows. 

If m', = (Z, - a,)" 52, then it can be deduced from the probability law (92)that 

"-"vlwr 
p0 (2,mf2)= C~CT-"{rn', - (Z - " ecz . . . . . .  ( 1  1 1 )  

where c, and c, are constants depending on ?% only. Taking the class of alternatives 
at > a,, w, (9)is that portion of the hypersphere on which m', = constant, for which 
-
x 2 k, ( 4 ) .  Consequently the expression (91) becomes 

Make now the transformation ,-
A 
 Z d m ' ,x - a  -- ,Irn ' . . . . . . . . . . .  (115) 


from which i t  follows that 

~. , 

and the relation (114) becomes 
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the constant multiplying E necessarily assuming this value so that E = 1when x, =- oo . 
-

But it is seen from (115) that z= 
X-- a, ; consequently the boundary of the partial 

S 

region w,(6) lies on the intersection of the hypersphere, m', = constant, and the hyper- 
cone, (55- a,)/s =x,. This is independent of + ; its axis is the line x, =x, = ...=xfi 
and its vertical angle is 2 8 =2 cot-l 2,. 

If the admissible alternatives are divided into two classes, there will therefore be for 
each a common best critical region of size E .  

-
(a) Class at > a, ; region w,defined by x = 

x-- a, 
2r 2,.  . . . . . . .  (118)


S 

(b) Class at < a, ; region wo defined by z=E"5 z', =- x,, . . .  
S (119) 

where x, is related to E by (117): and xto by a similar expression in which the limits of 
the integral are - and x', = - 2,. 

This is " STUDENT'S"test.* It is also the test reached by using the principle of 
likelihood. Further, i t  has now been shown that starting with information in the 
form supposed, there can be no better test for the hypothesis under consideration. 

(2) Example (9).-The Hypothesis concerszi?zg the Variame isz the Sampled Population.- 
The sample has been drawn from some normal population and H', is the hypothesis that 
s =0,: the mean a being unspecified. We shall have for H', 

while for an alternative H, the parameters are as in (106). 
Further 

satisfying the condition (75) with B = 0. We must therefore determine on each of the 
family of hypersurfaces 4 .= 4, (that is, from (121): Z = constant) regions wo (4 )  
within which p, 2 k (+,) p,, where k (4,) is chosen so that 

Since we are dealing with regions similar with regard to the mean a, we may put 
cc =r a,, and consequently find that 

sa(02 - c?) 5 - (2- at)$((SO2- c?) + 262 0; (log - -1log k) 

at 9% 


= (c02- 0:) k' (4,) (say). . . .  (124) 

* ' Biometrika,' vol. 6, p. 1 (1908). 
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The admissible alternatives must again be broken into two classes according as 
ot > Go or < a,, and since Z is constant on # = gS,, the regions w,( 4 )will be given by 
t'he following inequalities :-

(a) Case o, > a,, s2 2 k' ( 4 )  . . . . . . . . . .  (125) 


(b )  Case a, < a,, s2 k' (#). . . . . . . . . . .  (126) 


But since for samples from a normal distribution 5and s2 are completely independent 
the values of k' ( d ) that determine the regions w, ( 4 ) so as to satisfy (123), will be 
functions of E and .II,only. It follows that the best critical regions, w,, for H', will be- 

(a) for the class of alternatives a, > a,, defined by s2 r so? . . . .  (127) 
(b) for the class of alternatives a, < a,, defined by s2 s st:. . (128) 

These regions lie respectively outside and inside hypercylinders in the n-dimensioned 
space. The relation between E and the critical values s,2 and s1,2 may be found from 
equations (46), (48) and (50) of example 2." 

V.-COMPOSITE HYPOTHESES C DEGREES FREEDOM.WITH OF 

(a) Similar Regions. 


1;Ve shall now consider a probability function depending upon c parameters 6: 


This will correspond to a composite hypothesis 'H', with c degrees of freedom. 
Every function (129) having specified values of the a's, will correspond to some 

simple hypothesis belonging to H',. Let w be any region in the sample space W, 
and denote by P ({~'l ', ... a")') w) the integra,l of (129) over the region w. 
Generally i t  will depend upon the values of the a's. 

Fix any system of values of the a's 

(A) . . . . . . . . . .  (130) 

If the region w has the property, that 

P ((a-dl),... aA(')}W) -- E = constant, . . . . . . . .  (131) 


whatever be the system A, we shall say that it is similar to the sample space W with 
regard to the set of parameters a'l), ~ ( 2 1 ,... a'" and of size c. 

* The difierence between the two cases should be noted : In example (2) the population mean is 
specified, Hois a simple hypothesis and m', is the criterion. In example (9) the mean is not specified, 
H', is composite and the criterion is sa, 



This is the natural generalisation of the notion of similarity with regard to  one single 
parameter previously introduced. 

Let us first consider regions w, which are siniilar to  W with regard to some single 
parameter, a@), for some fixed values of other parameters a'j) ( j= 1 ,  2, .. . c, but j # i). 
Clearly there niay be regions which are similar to W with regard to a"' when the other 
a's have some definite values, but which cease to be similar when these values are 
changed. 

We shall now prove the following proposition. 
The necessary and suacient condition for w being similar to W with regard to the 

set of parameters a(,), ~ ( 2 ) )... a@), is that i t  should be: similar with regard to each 
one of them separately for every possible system of values of the other parameters. 

The necessity of this condition is evident. 'CQe shall have to prove that it is also 
sufficient. This we shall do assuming c = 2, since the generalisation follows a t  once 
from this. 

The conditions of the theorem mean that, (a),whatever be the values of ad1), ad1) 
and a,(2)we shall have 

and (b), whatever be crJ1), a,',), aDe2), then 

It follows that whatever be a,',), a,(l) ; a,'2), a,") we shall have 

and thus that the region w is similar to 1;Ii with regard to the set dl) ,  
We shall now introduce a conception which may be termed that of the independence 

of a family of hypersurfaces from a parameter. 
Let 

fi(a, XI, x,, ... x ~ )=Ci ( i= 1,  2, ... h: <a) ,  . . . . . . (135) 

be the equations of certain l~ypersurfaces in the n-dimensioned space, a and Cibeing 
parameters. Denote by S (a, C,, C,, ... Ck) the intersection of these hypersurfaces, 
or if I% = 1, the hypersurface corresponding to the equation (135). Consider the 
family of hypersurfaces S (a, C,, C,, .. . C,) corresponding to a fixed value of a and to 
all possible values of C,, C,, ... (2%. This will be denoted by P (a). Take any 
hypersurface S (a,, C',, ... C',) from any family F (a,). If whatever be a, i t  is 
possible to  find suitable values of the C's, for example C",, C",, ... C",, such that 
the hypersurface S (a,, C",, C",, ... C",) is identical with S (a,, C',, ... GIa)? then we 
shall say that the family B' (a) is independent of a. A simple illustration in 3-dimen- 
sioned space may be helpful. Let 
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These equations represent families of spheres and of planes. For given values of 
a, C1 and C,, S (a, C,, C,) will be a circle lying a t  right angles to the line xl = x, =x, 
and having its centre on that line. The faniily P (a) obtained by varying C, and C, 
consists of the set of all possible circles satisfying these conditions. This family is 
clearly independent of a-that is, of the position of the centre of the sphere on the line 
x, =X, = x,-SO that P (a) may be described as independent of a. 

It is now possible to solve the problem of finding regions similar to JV with regard 
to a set of parameters ~ ( l ' ,  a@', ... a''', but we are a t  present only able to do so under 
rather limiting conditions. In the first place we shall have conditions analogous to 
those assumed when dealing with the case c = 1 (see p. 313). 

akp0(A) We shall assume the existence of --- in every point of the sample space except a ( ~ ( ~ 1 ) ~  

perhaps in a set of measure zero, and for all values of the a's. 
(B) Writing 

i t  will be assumed that for every i = 1, 2 ,  ... c. 

Aiand B, being independent of the x's. 
(C) Further there will need to be conditions concerning the hypersurfaces $i = const. 

Denote by S(a"',C,, C,, ... Ci-,) the intersection of the hypersurfaces 

corresponding to fixed values of the a's and C's. F (a(")will denote the family of hyper- 
surfaces S (a"', C,, ... Ci-,) corresponding to fixed values of t'he a's and to  different 
systems of values of the C's. 

We shall assume that any family P (a'i') is independent of for i = 2, 3, ...c. 

It will be noted that the order in which the parameters a are numbered is of no 
importance and therefore tlzat the above condition means simply that it is possible 
to find an order of the parameters a,  such that each faniily P (ati') is independent of a(i'. 

An illustration of these points will bc given in examples (10) and (11) below. 
We shall now prove that if the above conditions are satisfied," then regions similar 

to FV with regard to the set of parametcrs a',', a'2', ... a"', and of any given size E,  

do exist. In  doing so, we shall show the actual process of construction of the most 
general region similar to W for any value of E. 

Assume that the function po satisfies the above conditions and that u1is a region 
similar to VC' with regard to a'l', a',', ... a"' and of the size E, so that 

K ' ~ ) ,... = E, . . . . . . . . .  (141)
T' ((%(I), a('))20) 

* We are aware that  these conditions are more stringent than is necessary for the existence of similar 
regions ; this is a point requiring further investigation. 
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whatever be the values of the a's. As we have seen above, the similarity with regard 
to the set of parameters means the similarity with regard to any one of them separately, 
as for example a(l), for any set of values of the others. It follows from the results proved 
in the case c = 1, that zu is built up of parts, w (4)of hypersurfaces 4, =C, corresponding 
to fixed values of parameters cr and to different values of C,. Each region w (9,) must 
satisfy the condition 

P (w (4,) ) = EP(W (4,)), . . . . . . . . . . .  (142) 


being otherwise unrestricted. We have assumed that the family P (a:") of hypersurfaces 
S (a(2), C1) corresponding to the equations +, =C, is independent of crt2). This of 
course does not mean that a particular hypersurface S (a(2),C,) is independent of 
E ( ~ ) ,  F (d2)) fixed but JV (4,) and consequently to  (4,) will mean a specified member of 
in the space Wand independent of c ~ ( ~ ) .  It will correspond to some definite complex of 
values of x's and of C, ; if a'2)is changed, then W (4,) will remain unchanged, though 
i t  will correspond to some other value of C,. The possibility of decomposition of 'CV 
and .zu into such regions VT(4,)' and w (4,)which do not change when aC2)varies, is 
guaranteed by the condition that F (ai2))is independent of d2). 

We shall now use the condition that w is similar to W with regard to ail)whatever 
be the values of other parameters, and thus of C C ( ~ ) .  This means that the variation of 
a(2' does not destroy the equation (142). 

It follows that 

As the regions W (4,) and to  (4,) are independent of K(~ ' ,  these conditions inap be 
written in the form 

... 
(K 2 1 ) ~  

. . a .j...i',,,,, &dw(+,) =.I .1mr (d,L)a+ d ~ ( d , ) .  (144) 

We may now use the condition (139) for i = 2, and applying the method used when 
dealing with the case c = 1, show that (144) is equivalent to 

Following the same method of argument we find immediately that the necessary 
(and clearly also sufficient) condition for u)being similar to W with regard to a(l)and 
a(2)is that 

where W (4,) $2) means the intersection in the sample space W of the hypersurfaces 
4, =C1 and 4, =C, for any values of C, and C,, and w (9 , ) Ca)-the part of the same, 
contained in w. 
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It is easily seen that the same argument may be repeated c - 1 times and that 
finally we shall find that the necessary and sufficient condition for w being similar to 
W with regard to the whole set of parameters a(,), a'*), .. . a'" is that 

Here MT (4,) 4,. ... 4,) means the intersection in MT of hypersurfaces +i = Pi, 
(i= 1, 2, ... c) for fixed values of the a's and for any system of values of the C's. 
The symbol w (4,) 4,) ... 4,) means the part of TV (4,)  +,, ... +,) included in w. 

Having established this result it is now easy to construct the most general region w, 
similar to W with regard to a',', C L ' ~ ) ,...a"), provided that the function p satisfies the 
above conditions. 

We fix any system of values of parameters a'l), a(,), ... a") and consider the hyper- 
surface W (+,, +,, ... +,) corresponding to some system of values of C,, ... C,. From 
this hypersurface we take an arbitrary part w (4,) +,, ... + c )  satisfying only the 
condition (147). The aggregate of w (+,, +,, ... +,), corresponding to all different 
systems of values of C,, C,, ... C, will be the region w required, similar to W and of 
the size e. 

I n  the section which follows i t  will be assumed that the function p satisfies the 
conditions (A), (B)and (C) under which we are able to construct the most general similar 
region. Though these conditions seem to be very limiting, there are many important 
cases in which they are satisfied, and in which it is therefore possible to  treat the 
problem of best critical regions by this method. 

(b )  The Determination of the Best Critical Region. 

The set i2 of admissible hypotheses will be defined by the probability law (66), 
depending on the c + d parameters (67)) each simple hypothesis specifying the values 
of all parameters. For the composite hypothesis H', with c degrees of freedom the 
law, p,, will be given by (69) and the parameters will fall into two groups as in (68). 
The best critical region w,of size E with regard to a simple alternative H, defined by 
(70) and (71), must satisfy the following conditions :-

(1) w,must be similar to W with regard to the c parameters a(1),a(,) ... a('); that 
is to say 

Po(w,) = E,  . . . . . ' . . . . . . ' (148) 

must be independent of the values of the a's. This we have shown in the preceding 
section is equivalent under certain assumptions to the condition (147). 

(2) If v be any other region of size E similar to W with regard to the same parameters, 
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As in the case where the probability law p, depended only upon the value of one 
unspecified parameter a'l), we can prove that if w, is a region maximising P, (w), then 
except perhaps for a set of values of +,, +,, ... +, of measure zero, the region 
w, (+,, +,, ... 4,) will have the property of maximising Pt ( to (+,, +,,... +,) ). That 
is to say, P, (w,(dl, +2 ,  ... 4,))will be greater than or ah least equal to the integral 
of pt taken over any other part of the region W (+,, +,, ... +,), satisfying (147). The 
proof is identical to that given in Section I V  (c) and will not be repeated. 

In  this way the problem of finding the best critical region for testing H', is reduced 
to that of maximising 

p (W ( 4 ,  , . . . .  ) . . . . . . . . . . .  05')) 

under the condition (147) for every set of values, 

The problem does not differ essentially from that deelt with when considering a 
simple hypothesis (Section I11 (a)),and the resulting solution is as follows, The 
necessary and sufficient condition that w, (+,, +,, ... +,) must satisfy in order to 
maximise (150) is that inside the region we should have 

h being possibly a function of the values of +'s, which must be determined to satisfy 
(147). 

Finally, therefore, the method a t  present advanced of finding a best critical region 
for testing a composite hypothesis H', with c degrees of freedom may be summed up 
as follows. 

We start by examining whether the limiting conditions assumed under the above 
theory are satisfied : 

(A) The first condition concerns the indefinite differentiability of p, with regard to  
any parameter a'l', a'", ... a(". 

(B) Next we calculate 

and see whether 

the coefficients Aiand Bi being independent of the sample variates xl, x,, ...r,. 
(C) Up to this stage the order in which the c parameters a@)are numbered is in- 

different, Now we must consider whether i t  is possible to arrange this order in such 
a way, that (1 )  the family F (cc',)) of hypersurfaces S (a(2), C,), corresponding to the 
equation 

+ ,=c ,  . . . . . . . . . . . . . .  (166) 
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is independent of ; (2) that the family F (a'3))of hypersurfaces S (ct(3',C,, C,), each 
of which is an intersection of two hypersurfaces 

is independent of cr(3) ; and so on in general for a(" until lastly we find that the family 
F (a'") of hypersurfaces S (a'", C,, C,, ... (2,-,), formed of points satisfying c - 1 
equations 

45, = ;GI ,  4,-cs ,  ... $c-.l =Cr,-l, . . . . . . . .  (I57] 

is independent of a'"'. 

If all these conditions are satisfied, then the best critical region w,of size E with regard 
to a simple alternative, H,, determining a frequency law I),, must be built up of pieces, 
w,($,, +z, ... + c ) ,  of the hypersurfaces W (4,, $,, ... (b,) on which the inequality (152) 
holds, the coefficient k (+, , +,, ... 4,) being determined to satisfy (147). 

We note that if the boundaries of the regions w,($,, $,, ... 4,) are independent of 
the d additional parameters, 

, &(('+2) & ( c i - l o  (158).... . . . . . . . . . . . .  

specified in (67), the,n zc?, will be a coxninon best critical region with regard to every H, 
of the set a. 

( c )  Illustrative Ezarnples. 


1Ve shall give two illustratioiis in which we suppose that two samples, 


( I )  X, of size 12,, mean = ?El,standard deviation = s,. 

(2) C, of size n,, mean - Z,, standard deviation = s,. 

have been drawn a t  random from some normal populations. If this is so, the most 
general probability law for the observed event may be written 

where 11, + $8, =N, and a, , a, are the mean and standard deviation of the first, and 
a, ,a, of the second sampled population. 

(1) Example (lo).-The test for the significance of the diflerelzce betweeft two 
variances.-The admissible simple hypotheses include pairs of sampled populations 
for which a,, a,, a, > 01, G, > 0 may have any values whatever. H', is the composite 
hypothesis that. G, =: o,. This is the test for the significance of the difference between 
the variances in two independent samples. The parameters may be defined as 
follows : 

For a simple alternative W,: 
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For the hypothesis to be tested, H', : 

H', it will be seen, is a composite hypothesis with 3 degrees of freedom, a,  b and o being 
unspecified. 

We shall now consider whether the conditions (A), ( H )  and (C) of the above theory 
are satisfied. 

(A) The condition of differentiability of p, with regard to all parameters, for all 
values of a'f' and a(2)and for a(3)> 0, is obviously satisfied. 

(B) Malring use of (159), we find that 

log p0 =-N log J2n - N log o --1 {rz, (Zl - cc)2 + 12, (Z2- a - b)2
2a2 

+nls12+ n2s,2j, . . . .  (162) 

We see that 
1 A 4 ' 2  =A2, $ I 3  =A3 + B3 +3, . . . . . . (166) 

where the A's and B's are independent of the sample variates, so that the condition (B) 
is satisfied. 

(C) The equation of the hypersurface S (a@), C,), namely, 

where C1 is an arbitrary constant, is obviously equivalent to the following, 

n131 +%,Z, =C', . . . . . . . . . . . .  (168) 


depending only upon one arbitrary parameter C',. Hence the family of these hyper- 
surfaces, E' (a(2)),is independent of a(,). 

Similarly the equation 4, =C,, in which C, is arbitrary, is equivalent to 

in which C', is arbitrary. The intersections S (d3), C,, C,) of (168) and (169), which 
satisfy also the equations - -

x, = const.; x2 = const. . . . . . . . . . .  (170) 

form a family, F (a(3)), which is independent of a@). 

VoL. CCXXXL-A. 2 Y 
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I-Ience also the condition ((7) is fulfilled, and tve may now attempt to construct 
the best critical region w,. Its elements w, (+,, 4,, 4,) are parts of the hypersurfaces 
W ($,, 4,, 4,), satisfying the system of three equations 4i =Ci ( i= 1, 2, 3), con-
taining certain fixed values of the a'" and arbitrary values of the constants Ci. Instead 
of this system of equations we may use the following which is equivalent 

-x1 = const. . . . . . . . . . . . .  (171) 

The element w,(4,, #,, #3) is the part of W (+,, 4,) $,), within which 

p t z  k(&,Z,,s,)p,, . . . . . . . . . . .  (174) 

the value of k being determined for each system of values of Z,, Z,, s,, so that 

Po (wo (41, $2,  43)) = E Po (w (41, $2, 553)). . . - (175) 

The condition (174) becomes 

Since the region determined by (175) will be similar to W with regard to a, b and o 

we may put a = a,, b =b,, o =a,, and the condition (176) will be found on taking 
logarithms to reduce to 

n2((Z2- a, - b1)=+ s,2) (1 -- Q2) I2 a12 0, (log k -- n, log 8). . .  (177) 

Since this inequality must hold good on the hypersurface on which Z2 is constant, i t  
contains only one variable, namely, s,2. Solving with regard to s22 we find that the 
solution will depend upon the sign of the difference 1- 02. Accordingly we shall 
have to consider separately the two classes of alternatives, 

d
(a) 8 =-2> 1; the B.C.R. will be defined by s,2 z, k', (Z,, Z2, s,2) . . 

a1 
(178) 

a(b) 8 =2 < 1; the B.C.R. will be defined by s,2 5 k', (Zl,Z,, s,2), . . (179) 
5 1  

where k' stands for 

2 oI2Qz(log k - lt,, log 8) - (2,  -q - bl)$. . . . . . .
n2 (1 - 02) (180) 



331 THE MOST EBFICIENT TESTS OF STATISTICAL HYPOTHESES. 

The problem of finding the best critical region w,of size E consists now in deter- 
mining kt so as to satisfy (175). This condition may be expressed as follows : 
Since W (4,) Q2, 4,)is the locus of points in which Z,, Z2 and s,2 have certain fixed 
values, the right-hand side of (175) is the product of E and the corresponding value of 
the frequency function of the three variates Z1,Z2 and s,2 or po (Z,, Z,, s2). The left- 
hand side of the same equation is the integral of po over that part of W (+,, +,, +,) 
upon which s$ satisfies either (178) or (179). To calculate this expression, we may 
start with the frequency function po (Z,, X2, s,2, s:). Then 

Po (W (41,Q a r  $3)) = ~ 2 ,  dsa2, in the case (a), . . (181)(k" PO ($1 ~ 2 ).k', 

Here k" and Id"' are the upper and the lower limits of variation of s,2 for fixed values 
of Z,, Z2 and s,2. Further, we shall have 

It is known that 

Introducing s,2 instead of s,a as a new variate, we have 

and 
n,-3 fl, (%-~,)~+n,( ~ , - a , ) ~ + N s $  

po (Z1, X2, sa2, sZ2) = const. (Ns,2 e- . (186)- 9t2  s , 2 ) 2  s ~ ~ , - ~  2 ~ , =  

It is easily seen that 
Nk 11 =-s,2, k t t t = 0  . . . . . .  . . .  
n2 (187) 

Therefore, using (181), (183) and (186) we have from (175), after cancelling equal 
multipliers on both sides, 

for case (a), and an analogous equation for case (b). Write 

n2s$ =Ns,2u . . . . . . . , . . . .  (189) 


2 ~ 2 
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where u is the nem7 variate. Then insteatd of (188) we shall have 

n z  nt23 n,-1 v,,-l' ^urg a,-S ?is--3 
=E B (- .TI=!, (190)(1 - B) u C ~ U  2 (I-%)" u "u, . 

where 

It follows froru (190) that u,a,nclz~', depend only upon .11,,,12, and E. Therefore, what- 
ever be Z,, %, and sa2, the element w (+,, +,, +,) of the best critical region is defined 
by the inequality 

S;  z ktl = *?LO -Nsa2 , in case (a) . . . . . . , (192) 
t t ,  

or 

?$22 s kt, = ri,,-Nsu2 , in case (b) .  . . . . . . . (193) 
922 

These two inequalities are eqxzivalent to the follo.cving- 

(a)  For alternatives a, > o, ;u= n,s,2 z'zco, . . . . .+ 9t2sz2 

(b) For alternatives a, < o, ;u= .12,s,2 
I U ' , . .  . . . .  

n1sl2 +n2s$ 

which define the best critical regions in the two cases. We see that they are comnlon 
for all the altcraatives, included in each cla,ss (a )and (b). The constant zr ,  depends 
only upon n, and n,  and the value of E chosen ; it may be fottnd from the inconlplete 
beta-function integral (190), or from any suitable transformation, as for example, 
that to FISHER'Sz-function." 

Approaching the problem of testing whether the variances in two sanlples are 
significantly different, from the point of view of the best critical region, we have reached 
the criterion u,which is equivalent to that suggested on intuitive grounds by 
PISHER. This criterion is also that obtailzed by applying the principle of likelihood, 
but that method did not bring out clearly the need for distinction between the two 
classes of alternatives, since A < A, a t  both ends of the 16-distributi0n.J- 

(2) ExawzpZe (1l).-The test for the sign$'ifi'canceof the di8erenee between tzuo mealzs.---

We have again two random and independent samples, C, and X,, from normal popula- 
tions, and the set R of admissible hypotheses includes pairs of poplzlations in which 
the standard deviations a, and a, have the same (but unspecified) value o > 0, while 
the means a, and a, =a,+ b, rnay have any values whatever. H', is the composite 
hypothesis with 2 degrees of freedom, that b, =0. 

* FISHER." Statistical JIethods for Research Workers," London, 1932. This contains tables giving 
z, (a f~~nct ion for E =of ?A,) 0.05 and 0-01. 

f PEARSON " 'Bull. Acad. Polon. Sci. Lettres ' (1930).and NEYMAN. On the Problem of Two Samples." 
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The test of the hypothesis H', is the test for significance of a difference between two 
means, in the case where it is known that the sampled populations have common 
variances. 

Any simple alternative, H, ,of the set Q specifies the parameters 

H',, the composite hypothesis to be tested, specifies only one parameter 

= bo =0, . . . . . . . . . . . .  (197) 
the others, = a, and d2)= 0 , being arbitrary. 

Besides the symbols previously defined, ?El, s, ; Z2,s, (mean and standard deviation 
of each sample), we shall need the following : Z,, the mean, and so,the standard deviation 
of the sample of N =n, + fi2 individuals formed by putting together the two samples 
C1 and Z,. 

The probability law p, will be given by 

The condition (A) is obviously satisfied by p,, and following the same line of argument 
as in example (10) we find that the other conditions (B) and (C) are satisfied also. 
In  fact, 

4,= a- aa(l) = 
N- (Z, -4) . . . . . . . . . . . . .  

(199)
02 

and it is easy to see that $', and +',are linear functions of the corresponding 4's. 
Now the equation, $, = constant, is equivalent to 

C, being an arbitrary constant. Clearly the family F (at2') of hypersurfaces W (4,) 
corresponding to this last equation is independent of a',), and hence we conclude that 
the best critical region w, of size E may be built up of elements w, (+,, 4,). To obtain 
such an element, we have to find the hypersurface W (+,, $,), which is the locus of 
points in which 

=const., 4 ,  = const. . . . . . . . , . ,  (202) 


and to determine its part, satisfying the conditions 
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Now the system of equations (202) determining W ((6,, (6,) is equivalent to the 
following--

-
x, =C, . . . . . . . . . . . . . .  (205) 

As the best critical region is independent of a, and o we may put into p, 
( t )a1 = a, . a =a,, . . . . . . . . . . . .  ('207) 


and taking into account the fact that (205) and (206) must hold good on the hyper- 
surface,' Nr (+,, +,), the'condition (203) may be transformed into the equivalent 

1;' being a new constant depending upon Z, and s,2 (that is to say upon (6, and $,), 
and upon E. 

Again two classes of alternatives H, must be considered separately: (a) if 
b, =; a,@)- a,'t) > 0, then the region w, +2)  will be d e h e d  by 

(b) if, however, b, = a,(t)- a,@)< 0, then instead of the above inequality, we shall 
have 

V =Z1 -Z25.ktr2 (Z,, so2). . . . . . . . . .  (210) 

The solu~tions in both cases are analogous, so we shall consider only the case (a). 
The problem consists in determining k", (Z,, so2) so as to satisfy the condition (204). 
This is equivalent to the equation 

jak", p, (z,, 82, v) av  =.j
.kiv 

yo(z,,so2,V) (IV, . . . . . .  (211)
k"' .k"' 

where p, (x,, s,2, 1)) is the frequency function of the variates X,, so2 and v, and k"' 
and P" are the lower and the upper limits, respectively, of the variation in v for fixed 
values of Z, and s,2. 

Thus we have to find p, (X,, s,2, v). We start with the frequency function of the 
variates Z1, Z2, s12,sZ2, namely : 

-N (9,-a,)"70a

pO(%, X,, s12,82)=C s,'21-3 s ~ - ~ e  zrrl , . . . . .  (212) 

C being a constant. Substituting in (212) 

Z , = ~ , , + ? V ,  . . . . . . . . . . . . . . . . (213) 


xp"2, --'4 , . . . . . . . . . . . . . . . (214)

N 

82 =- Nso2- als,2 -- . . . . . . . .  (215) 
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and multiplying by the absolute value of the Jacobian 

we obtain the frequency function of Z O ,so2, v ,  s,2, namely, 

We note that for fixed values of so2and v , the variate s,2 map lie between limits zero and 

The frequency function po ( Z o ,  so2, v )  is found from po ( Z , ,  s:, s,2, v )  by integrating 
i t  with regard to s,2, between the limits zero and st:. We have thus 

Putting this into the equation (211), and cancelling on both sides equal constants, 
we find 

(220)
where 

ICI l l  ---- N s O  , k h =N5-0+ . . . . . . .  (221)
J G 2  v' n1n2 
Make now the transformation 

Nso z
'U = --- - , . . . . . . - . . . .  (222)2/% 211 + z2 

z being a new variable. Since so is constant on W $ 2 )  

and the equation (220)becomes 

Similarly 
m 

N-1 

( 1  + z2 ) - - dz = c,/; for case (b). . . . .  (225)iz,,e 
r (N+) 



336 J. NEYMAN AND E. S. PEARSON ON THE PROBLEM OF 

z', and z", are functions of L", and Ic", defined by (209) and (222). It follows from 
(224) and (225) that they can depend only on N and E. Thus the best critical region is 
defined as follows : 

(a) For alternatives b, > 0 ; 

(b) Tor alternatives b, < 0 ; 

whatever be 2, and so, where 2, may be found from published tables for any E chosen." 
We thus reach the well-known extension of "STUDENT'S') who,teat given by FISHER,? 

however, uses instead of z ,  
t = x y / ~ - 2 .  . . . . . . . . . . . . (228) 


It also follows from the principle of likelihood. Again it has been shown that on the 
basis of the information available no better test could be devised for the hypothesis 
under consideration, 

1. A new basis has been introduced for choosing among criteria suitable for testing 
any given statistical hypothesis, H,, with regard to an alternative H,. If 8, and 8,  
are two such possible criteria and if in using them there is the same chance, E, of rejecting 
H, when it is in fact true, we should choose that one of the two which assures the 
minimum chance of accepting H, when the true hypothesis is H,. 

2. Starting from this point of view, since the choice of a criterion is equivalent to 
the choice of a critical region in multiple space, it was possible to introduce the con- 
ception of the best critical region with regard to the alternative hypothesis H,. This 
is the region, the use of which, for a fixed value of 8 ,  assures the minimum chance of 
accepting H, when the true hypothesis is H,. The criterion, based on the best critical 
region, may be referred to as to the most efficient criterion with regard to the alternative 
Ht. 

3. It has been shown that the choice of the most efficient criterion, or of the best 
critical region, is equivalent to the solution of a problem in the Calculus of Variations. 
We give the solution of this problem for the case of testing a simple hypothesis. 

To solve the same problem in the case where the hypothesis tested is composite, the 
solution of a further problem is required ; this consists in determining what has been 
called a region similar to the sample space with regard to a parameter. 

* Por z : "Tables for Statisticians and Biometricians," Part I ,  Table XXV ; Part 11, Table XXV. 
-t For t : ' Metron,' vol. 5, p. 114 (1926) ; FISHER,Statistical Methods for Research Workers,'' p. 139." 
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We have been able to  solve this auxiliary problem only under certain limiting con- 
ditions ; a t  present, therefore, these conditions also restrict the generality of the 
solution given to the problem of the best critical region for testing composite hypotheses. 

4. An important case arises, when the best critical regions are identical with regard 
to a certain class of alternatives, which may be considered to include all admissible 
hypotheses. In this case-which, as has been shown by several examples, is not an 
uncommon one-unless we are in a position to assign precise measures of a priori 
probability to the simple hypotheses contained in the composite H,, i t  appears that 
no more efficient test than that given by the best critical region can be devised. 

5. The question of the choice of a " good critical region " for testing a hypothesis, 
when there is no common best critical region with regard to every alternative admissible 
hypothesis, remains open. It has, however, been shown that the critical region based 
on the principle of likelihood satisfies our intuitive requirements of a " good critical 
region." 

6. The method of finding best critical regions for testing both simple and composite 
hypotheses has been illustrated for several important problems commonly met in 
statistical analysis. Owing to the considerable size which the paper has already reached, 
the solution of the same problem for other important types of hypotheses must be left 
for separate publication. 


